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PRESSURE FLOW OF LIQUID WHICH CONGEALS ON A PIPE SURFACE 

UNDER CONDITIONS OF DISSIPATIVE HEAT RELEASE 

S. V. Maklakov, A. M. Stolin, 
and S. I. Khudyaev 

UDC 532.78+532.542 

There are many known processes in nature and in engineering where the fl0w of liquid 
is accompanied by a phase transformation. Examples of such processes are the accidental over- 
cooling of pipelines [i], the transport of highly paraffinous petroleum [2], the motion of 
magma along a dike [3], the high-velocity flow of gas past an object [4], or even the elec- 
trical heating of a conductor during phase transformation [5]. The substantial effect of 
volumetric heat release during phase transition is shown in [4, 5]. An important peculiar- 
ity in these examples is the simultaneous interaction of the phase transition with chemical, 
Joule, or dissipative heat release. Earlier consideration has been made of the effect of 
the phase transition on the critical conditions of thermal shock in planar [6] and in cylindrical 
[7] regions and of its hydrodynamic analog, Couette flow [8]. 

This study investigates the peculiarities of the phase transition under conditions of 
viscous liquid pressure flow inside a pipe of circular cross section and of infinite length 
where there exists a given pressure gradient and a given flow rate. Either a constant temper- 
ature or a constant thermal flow is applied to the wall of the pipe. 

It was shown that in all ranges of the parameters for the problem, a steady-state solu- 
tion is achieved. Steady-state temperature and velocity profiles are determined. For a given 
pressure gradient and wall temperature in the quasisteady-state approximation, a plot is given 
for ranges of the parameters corresponding to the characteristic type of flow: a steady-state 
condition with intermediate positioning of the phase boundary, the condition of pipe capping 
(total phase transformation), and the condition of hydrodynamic thermal shock [9]. It was 
shown that for a given thermal flow on the wall the condition for intermediate positioning 
of the phase boundary is absent. 

The peculiarities of flow for a given flow rate are analyzed. In this case, the steady- 
state flow with intermediate positioning of the phase boundary always exists. For a given 
thermal flow on the wall of the pipe it is possible to have flow without the solid phase. 
The flow rate and pressure characteristics are obtained, and the effect of phase transition 
is discussed. 

i. Statement of the Problem. We will consider a phase transition of the first kind 
under the conditions of viscous, Newtonian liquid pressure flow inside a pipe of circular 
cross section and of infinite length whose walls are maintained at a constant temperature 
T o which is less than the temperature of phase T,. Because of cooling, the liquid solidifies 
and a phase division is created on the inner surface at r = r,. The dependence of viscosity 
on temperature goes according to the law of Arrhenius: D = n0 exp (E/RT), where no is a pre- 
exponential factor, E is the initiation energy of viscous flow, R is the universal gas con- 
stant, and T is temperature. 

The equations of motion and heat balance, taking into account dissipative heat release, 
and the boundary conditions, can be written in the form 
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OT O"T i OT "c, Ov 
r < r , :  a~ at = 07+ ' -7"-67r  + "~'~ "aT; (~.1) 

Ov t O 
P~ot F Or (rT*)+b;  (1.2) 

or o~r i or (1 3) 
r > r , : T  " ~ =  ar2 zr r Or' 

aT 0T 
r : = r , : T = T , ,  %1 ~r  L=v,_0 --  %2 ~- tr=r,+ ~ _,,-~ Or, 

-- -- P z ~ ,  ~,~ 

OT Ov 
r = O : T ; r = O ,  ~ - r=O,  r = q : T = T o ~  

v =  O; 
(1.4) 

(1.5) 

where r is the present radius; r z is the pipe~s radius; v is the velocity of the liquid; Q, is 
the heat of the phase transition; al, a2, Iz, and 12 are the coefficients of thermal diffusiv- 
ity and thermal conductivity for the liquid and the solid phase, respectively; Pl is the liquid 
density; ~, is the shearing stress; and b = -8p/8z is the pressure gradient along the length 
of the tube, which from now on will be considered constant. 

In dimensionless variables 

r ~l (r ,)  v . ~ r,  
e ( T - - T , ) ,  x =  o = - -  z - - -  t ,  x , = - -  

--q' ~]b ' E 0,p~1 q e = m'1 

and in the exponential curve approximation of Frank-Kamenetskii [I0] (RT,/E << I), Eqs~ (i.I)- 
(1.3) and boundary conditions (1.4) and (1.5) take the form 

ao a~'o t ao 
x < x , : e K f  -~fi-4- z Kf ' t - t 6 •  

= - -  \ O z ]  ' ( i . 6 )  

o(o i O 
(exp  ( - -O) .x~-~)-4-  1; ( 1 . 7 )  el 9"~ x 0x 

= t 00  8 oo o~e+T~,  
x > x , :  a 0z 9x - T  (1.8) 

aO] OO I a x ,  
x = x ,  : ~ 7  ~=~-,+o = b-7 ~-~,-o + - ~ '  O = 0,. m = 0; ( 1 . 9 )  

00 x = 0 : ~ = 0 ,  

The parameters I, ~, 00, a, ~, ~i, and the 
tions 

a~ 
~g=0, x ' =  l : @  = @oo (1.10) 

definition of s given below are determined by equa- 

x, ,  E~]* ~ (To r,),. = ~-~. x = 16RT~,~ln (r,)' Oo = 

a =  al" 8 a191Q, E ~i 81 11(T,)Q, E ~: 8----- ~T. 

(i.li) 

We will first consider the steady-state problem~ For solving the steady-state equations 
(1.6)-(1.8), it is useful to make the substitution of variables suggested in [ii, 12]: ~ = 
x 2. Excluding the velocity gradient, Eqs. (1.6)-(1.8) and boundary conditions (1.9) and (i.i0) 
then take the form 

daO I dO ~<~*:-~+ T ~  + •  ( 1 . 1 2 )  

d20 -t- I dO ~>;*:-~- T ~  o; 
i ~=~,:O=0, Oi = LO+; 

(i,13) 

(lol4) 
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= 0 :  dO~dE = 0 ,  ~ ='1 : O =0o,: (1 .15)  

where O' and O'+ a r e  t he  maximum va lues  of  dO/d~ whi le  moving from the  l e f t  and from the  r i g h t  
to the point ~ = $.:, (~..~ = x2...).,, 

The solution of Eqs. (1.11) and (1.12) using boundary conditions (1.13) and (1.14) can 
be found in [7]: 

, $ ,  < ~ < t : (9 = 6) 0 ( t  - -  In ~ / l n  ~ , ) ;  (1 .16)  

4 ] •  = q (4 --q)/2; ( 1.17 ) 

r 

O~=--q , '~ , ,  O + = - - O o / ~ . l n ~ , ,  q = - - 2 s / l n ~ , .  (1 .18)  

Equations (1.16)-(1.18) determine the solution of the problem, where q can be excluded 
according to (1.18). 

2. Flow Conditions with a Given Pressure Gradient. For liquid flow with a given pres- 
sure gradient, one can assume three ways for the development of the process: the well-known 
case of a capped pipe (total phase transformation), a flow with intermediate positioning of 
the phase boundary, and hydrodynamic thermal shock (HTS). The effect of a loss of the steady- 
state solution to the problem for sufficiently large pressure gradients is labeled as such 
using the terminology in [9]. In [13], attention was further given to the idealization of 
the theoretical analysis in [9]. However, as was indicated in [13], the model of HTS in [9] 
is of interest as a limiting case which allows one to consider the critical conditions of 
hydrodynamic ignition for a tube of sufficiently long dimensions (the transition from low 
temperature with a small flow rate to high temperature with a large flow rate). 

We will notice that the problem we are considering here becomes an HTS problem [9] for 
a wall temperature T O equal to the phase transformation temperature T,, i.e., O0 = 0. The 
limiting case K + ~ (sufficiently high heat release) evidently corresponds to shock condi- 
tions. In another limiting case 00 +-~ (for a high degree of cooling), conditions of cap- 

ping exist. 

An analysis of solutions (1.16)-(1.18) to Eqs. (1.12)-(1.15), which describe the steady- 
state temperature distribution of the liquid for a flow with a given pressure gradient, can 
be found in [7] with regard to thermal shock under conditions of phase transition. We will 
here present some of the results from [7]. 

Substituting q from (1.18) into the last expression of (1.17), one can obtain the de- 
pendence of the parameter K on the coordinate of the phase front g,: 

• = 2 (---s/ln ~,) (2 + s/ln ~,)/~. ( 2.1 ) 

The l a s t  e x p r e s s i o n  in (1 .17)  g ives  two va lues  fo r  q: 

q •  2 (! 4- V - t -  • (2 .2 )  

which correspond to the two temperature distributions 0• determined by the first equation of 
(1.17). As is known from thermal shock theory [12, 14], only the distribution 0_ is stable 
for relatively small temperature changes. 

The value of K in (2.1) must be positive. This determines the range over which $, can 
change: 0 < ~. < exp (-s/2). It is evident from Eq. (2.1) that K + ~ as $, + 0 and K + 0 as 
$, ~ exp (-s/2~; consequently, the problem has a solution for any K > 0, s> 0. Analysis 
of (2.1) shows [7] that for 0 < s < 3 - 2r = 0.172 the dependence K($,) is nonmonotonic and, 
therefore, in some range for the values of the parameter K, the solution is not unique. The 
boundaries on the region of nonmonotonicity of K• are determined by the following relations 

(Fig. 1): 

•177 = 2/~(2 -- IT) exp ]+; (2 .3 )  

~+ = exp (--]+/2); (2 .4 )  

I j :  = ( i  -4- s _ 1 / ( 1  - -  s)~ - 4 s ) / 2 .  (2.5) 
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For s = s, = 3 - 2r the values of <+ and <_ merge, and for s > s,, the solution be- 
comes unique. In the nonmonotonic region, the dependence ~(~,) decreases for G, < g+ and 
~, > $ and increases for $+ < $. < 

Because of the physical meaning of $, (~, must increase with an increase in the intensity 
of heat release, i.e., <), one can assume that only the increasing branch for the dependence 
of <(G,) is stable. 

An analysis of the equations using the quasisteady-state approximation, when the times 
for thermal and hydrodynamic relaxation are substantially less than the characteristic time 
for phase transformation (see [7]), i.e., they fulfill the conditions g << I~ gz << 1 [see 
(i.ii)], yields a presentation of the processes for unstable steady states. In this case, 
the equation of motion for the boundary of the phase front, in dimensionless variables, takes 
the form 

• O~,/OT=8(s/ln~, + l - - V i - -  ~,/2), (2.6) 
and the temperature distribution is determined by Eqs. (i.16)-(i.18), taking into account 
only the lesser (stable) distribution obtained from (1.17) while excluding q. Although Eq. 
(2.6) differs somewhat from the corresponding equation in [7], it allows for sufficiently 
complete qualitative research. In particular, the range of possible steady states narrows 
due to the rejection of those steady-state profiles which are unstable relative to tempera- 
ture changes. In the plane of the parameters < and s, the range of steady states for the 
quasisteady-state problem are determined by the inequality K < <0 = 2 exp (2s) (see Fig. i). 

Combining the results from an analysis of the steady-state and quasisteady-state system 
of equations, we can draw some conclusions. 

i. In contrast to [9], the present problem [see (1.6)-(1.10)] has a steady-state solu- 
tion for any value of the parameter <. In the range s < s,, <_(s) < ~ < <+(s), the solutions 
corresponding to $+(s) < G, < G_(s) are stable. Within this range, dependence (2.11) is in- 
creasing. The decreasing sections of curve (2.1) correspond to unstable solutions. Within 
the range of uniquess [a decreasing dependence for (2.1)], there are no stable steady states~ 

2. The nonsteady-state peculiarities of the flow are determined by the unstable steady 
states. If instability is exhibited only relative to changes in the phase boundary, but re- 
mains stable relative to changes in temperature and velocity, then the above formulated quasi- 
steady-state approximation is permissible. 

3. In the quasisteady-state approximation~ one can plot the ranges for specific types 
of flow (see Fig. i): I is the stable steady-state condition with intermediate positioning 
of the phase boundary G+(s) < $, < G_(s), II is for tube capping (total phase transforma- 
tion), III is for hydrodynamic thermal shock, and IV is the section which is common for re- 
gions I and III. The stable steady states exist here, but the initial conditions $, = 1 for 

= 0 do not pertain to the region of their attraction and result in HTS. 

4. The steady states with unstable temperature profiles do not effect the quasisteady- 
state behavior of the solutions. They are not steady state points for the quasisteady-state 
problem. 

3. Flow Rate and Pressure Characteristics for Flow with a Given Flow Rate. We will 
consider flow rate and pressure characteristics for flow during phase transi~lon, i.eo~ the 
dependence of pressure gradient b = -$p/Sz on the flow rate Q. 

Integrating the second equation of (1.7) and taking into account (i.17)~ we obtain 
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c~ 4 q(~"---~%T~4~2~,] , .~, + arc tgV~4- -q  ~, ; 

( 3 . 2 )  

Equations (3.2), (2.1), and (2.2) give the parametric requirements of the flow rate for 
the case of a given temperature on the pipe wall (Fig. 2). During phase transition, this 
characteristic differs qualitatively from the known curve for nonisothermal flow [15]. The 
phase transition leads to the appearance of a new decreasing branch for which b + ~ for Q 
0. Such an abnormal dependence is due to the small amount of dissipative heat release for 
low flow rates and, consequently, a thick layer of solid substance "grows" on the wall of 
the pipe, which impedes the flow of liquid (Q < QI, Fig. 2). For large flow rates (Q > Q2), 
the resistance to flow decreases due to the great amount of heating in the liquid and to the 
strong temperature dependence of viscosity (compare with [15]). The dependence b(Q) in- 
creases only for some intermediate values of the flow rate (QI < Q < Q2). This branch cor- 
responds to stable steady states for flow with a given pressure gradient. For a given pressure 
gradient which is less than b l, capping of the pipe occurs, and for b > b2, HTS develops (see 
Sec. 2). The steady-state processes for s > s, are also described in the quasisteady-state 
approximation, where the flow rate and pressure characteristics begin to decrease monotonely. 

The meaning behind the dependence b(Q) allows us to draw some conclusions regarding flow 
with a given flow rate. We will introduce the dimensionless flow rate 

Q - f E l l  (T,) (3.3) 

The solution of the problem is determined by (i.16), (i.17), (2.1), and (2.2), where K is 
now an unknown quantity which depends on ~ and is found from the equation r = -s/2 in $,. 

For a given flow rate, both temperature distributions G+ [see (1.7) and (2.2)] are 
stable (compared with [16]), where the plus sign (2.2) should be used for ~ > exp (-s)/r 
and the minus sign should be used for ~ < exp (-s)/~. The dependence of the position of 
the phase front on the flow rate is obtained from the relation 

? = [(-- s/8 in ~,)/(2 - -  s / l n  ~,)W 2 ~,. 

The dependence y(~,) in the interval 0 < g, < exp (-s/2) is a monotonely increasing func- 
tion, i.e., for any given flow rate, there exists a unique steady-state position of the phase 
front g,, where $, can be take on any value in the interval 0 < ~, < exp (-s/2). 

We note that the thickness of the "frozen" layer decreases monotonely with an increase 
in the flow rate, and the layers of solid substance on the pipe wall are substantial for 

arbitrarily large flow rates. 

4. The Case of a Given Thermal Flow on the Pipe Wal!. For a given thermal flow on the 
pipe wall (r = rl: 3T/3r = q0 or, in dimensionless variables, $ = i: 8G/3~ = q0, q0 = q0riE/ 
2RT2.~) we will write the solution of the system of equations (i.ii)-(i.14) in the form 
[compare with [7] and (1.16)-(1.18)] 

~, < ~ < t : 0  = -- qo in (~,/~); (4.1) 

[ 2 ] 
:0 =21n (4.2) 

• = 2si (2 - sO, sl = 2 

The dependence <(~,) then decreases monotonely, and the solution is unstable for all ranges of 
the parameters. The quasisteady-state equation of motion for the boundary of the phase divi- 
sion (1.9) has the form 

O~,/(O'~ = 8 (1 -- sl -- V i -- ~,/2). (4.3) 

In Fig. 3, the boundary which divides region I (conditions of HTS) and region II (condi- 
tions of pipe capping) is determined by relations 
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s, = i -- ~{-- • for x<2ands~ = i for • (4.4) 

Upon integrating Eq. (4.3), one can obtain the time of complete pipe capping for < < 2: 

2 (s~-- i) (4.5) 
Y -  

L 
Y = arcsin 

For K > 2, the process of pipe capping can be divided into two stages: establishment 
of the quasisteady-state temperature profiles for g, > g0 ($0 = r and passage of the phase 
front, under quasisteady-state conditions, from ~0 to 0. The time for the first stage can- 
not be found in the quasisteady-state approximation, but one can determine the time for the 
second stage ~,=. The total time of pipe capping will always be greater than z,=: 

t V~"~-[-~" (l--s1) l n i ( 2 - - s I ) - ~ i ~ ]  O<s~<:2: ~,~=~- Ks~(z_s~ ) ( 2 - s O + V ~  ]~ 

{ i V ~  2+ =arctg 

(4.6) 

Expressions (4.5) and (4.6) apply only in region I! (see Fig. 3). Hydrodynamic thermal 
shock develops in region I. The development of HTS can also be divided into two stages: 
establishment of the quasisteady-state velocity and temperature profiles and development of 
HTS under quasisteady-state conditions. During the first stage, a layer of solid substance 
is able to form on the walls of the pipe. During the second stage, the temperature of the 
liquid increases, and the layer of solid substance begins to decrease. The time for the sec- 
ond stage is determined from (4.3) 

- s l )  tg - 1 / s l  (2 . 7  ) 

Here YI = arcsin(4~7~,0); ~,0 is the minimum coordinate of the phase front which is attained 
during the first stage of nonsteady-state development of HTS. This quantity cannot be de- 
termined in the quasisteady-state approximation and, therefore, Eq. (4.7), in contrast to 
(4.5), does not allow for the calculation of ~shock. One can, however, make a qualitative 
conclusion about the limits of applicability for the quasisteady-state approximation; 
�9 shock= 0 for K$2,0/2 = I, and for K$2,0/2 > i, the quantity Yl and, consequently ~shock, 
lose their meaning. The quasisteady-state approximation is not possible in this range; ther- 
mal shock occurs during the first stage of the nonsteady-state development of the process. 
This range depends, generally speaking, on all of the parameters of the problem and, in partic- 
ular, on the heat of the phase transition Q .... The range, therefore, corresponds to large Q,. 
The quasisteady-state approximation is evidently valid for intermediate values of Q, which are 
not too large, so as to fulfill the condition K~2,/2 < i, and not too small, so as to fulfill 
the inequality E << i and E ! << i [see (i.i)]. 

For a given flow rate, the solution of the problem is given by relations (4.1)-(4o3). 
The unknown quantity K is determined by the relation K = s~/4~, where ~ is the dimensionless 
flow rate of the liquid (3.3). For boundary conditions of the second kind, one can find the 
flow rate and pressure characteristics explicitly: 8p/~z = 2~Z~r~q0/Q. 

In contrast to the isothermal flow of Newtonian liquid, where the pressure gradient is 
directly proportional to the flow rate, the pressure gradient in the present problem is in- 
versely proportional to the flow rate, which explains the accompanying effects of dissipative 
heating and phase transition. 

The dependence of ~ on ~, monotonely increases: ~ = $,[si/8(2 - sl)] I/2, where, as a 
result of intensive heat release, there will only be liquid in the pipe. In the plane of 
the parameters y, sl, the boundary which divides the regions of flow with one and two phases 
has the form y = /sl/g(2 - sl). 

507 



LITERATURE CITED 

I. S. S. Grigoryan, "Heating and melting of a solid object due to friction," Prikl. Mat. 
Mekh., 22, No. 5 (1958). 

2. V. M. Agapkin, B. A. Krivoshein, and V. A. Yufin, Thermal and Hydraulic Consideration 
of Pipelines for Petroleum and Petroleum Products [in Russian], Nedra, Moscow (1981). 

3. S. A. Fedotov, "The rise of basal magma from the earth's core and the mechanism of 
basaltic fissure eruptions," Izv. Akad. Nauk SSSR, Ser. Geol., No. i0 (1976). 

4. M. N. Ozisik and J. C. Mulligan, "Transient freezing of liquids in forced flow inside 
circular tubes," Trans. ASME, J. Heat Transfer, 91, No. 3 (1969). 

5. V. N. Dorovskii, A. M. Iskol'dskii, and E. I. Romenskii, "Modeling the hydrodynamic 
stage of phase transformations for electrical shock of metals," Preprint No. 83-91, 
Inst. Yad. Fiz., Sib. Otd. Akad. Nauk SSSR (1983). 

6. S. I. Khudyaev, A. M. Stolin, and S. V. Maklakov, "Thermal shock under conditions of 
phase transformation," FGV, No. 5 (1983). 

7. S.I. Khudyaev and A. M. Stolin, "Analysis of the conditions of self-ignition in cylin- 
drical volumes for frontal phase transformation," Khim. Fiz., No. 9 (1984). 

8. S. V. Maklakov, A. M. Stolin, and S. I. Khudyaev, "Phase transition under conditions 
of nonisothermal Couette flow of liquid," Zh. Prikl. Mekh. Tekh. Fiz., No. 4 (1984). 

9. S. A. Bostandzhiyan, A. G. Merzhanov, and S. I. Khudyaev, "Hydrodynamic thermal 
'shock'," Dokl. Akad. Nauk SSSR, 163, No. 1 (1965). 

i0. D.A. Frank-Kamenetskii, Diffusion and Thermal Transmission in Chemical Kinetics [in 
Russian], Nauka, Moscow (1967). 

ii. S. I. Khudyaev, "Some estimations of the eigenvalues for spherically symmetric prob- 
lems," in: Methods for Solving Problems in Mathematical Physics [in Russian], Nauka, 
Moscow (1966). 

12. A.I. Vol'pert and S.I. Khudyaev, Analysis of Discontinuous Functions and Equations in 
Mathematical Physics [in Russian], Nauka, Moscow (1975). 

13. A. G. Merzhanov and A. M. Stolin, "Hydrodynamic analogs for the phenomena of ignition 
and extinction," Zh. Prikl. Mekh. Tekh. Fiz., No. 1 (1974). 

14. A. G. Istratov and V. B. Librovich, "The stability of solutions in the steady-state 
theory of thermal shock," Prikl. Mat. Mekh., 27, No. 2 (1963). 

15. A. M. Stolin, "Nonisothermal flow of liquid in a capillary. Nonisothermal flow of 
liquid in a rotary viscosimeter," in: Diffusion and Viscosity of Polymers. Methods 
of Measurement [in Russian], Khimiya, Moscow (1979). 

16. S. A. Bostandzhiyan, A. G. Merzhanov, and S. I. Khudyaev, "Several problems for non- 
isothermal steady-state flow of viscous liquid," Zh. Prikl. Mekh. Tekh. Fiz., No. 5 
(1965). 

508 


